

Case Study: Electric Water Pump

Ga

Nd

Та

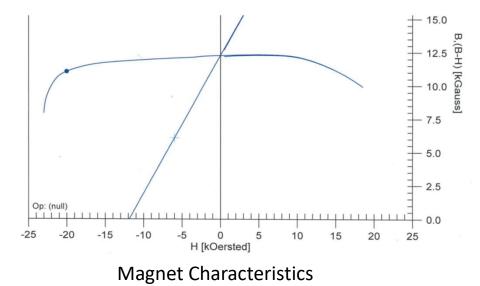
Injection Molded (IM) MQA magnet based surface permanent magnet (SPM) motor to replace Sintered Neo based interior permanent magnet (IPM) motor

Summary

- Use of surface mounted motor structure with MQA magnet can help in achieving the similar motor performance as of equivalent size IPM motor with sintered neo magnet
- The anisotropic bonded magnet doesn't use any heavy rare earths (HRE) or Cobalt and hence offers price stability

Introduction

- In order to evaluate the performance of anisotropic bonded neo magnet (MQA) in an electric water pump (EWP), we have procured a commercially available EWP
- The procured EWP is used for Engine auxiliary water pump.
- The motor of the procured electric water pump is benchmarked for both the physical dimensions and performance.
 - The motor has IPM structure with sintered neo plate magnets
- An optimal design for a surface mounted PMBL DC using the Injection molded (IM) MQA magnets is arrived at


Benchmarked Magnet Properties

Magnet Composition

- Presence of high heavy rare earth content and cobalt
 - High price volatlity

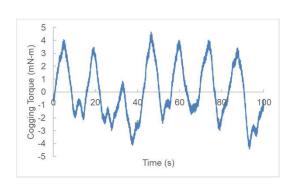
B-H Curve

Magnetics		
B _r	1.23T	
H _{ci}	> 23 kOe	
H _c	11.86 kOe	
(BH) _{max}	36.34 MGOe	

Stator Rotor Control electronics Non-magnetic cap Teeth Stator back-iron Magnet 5

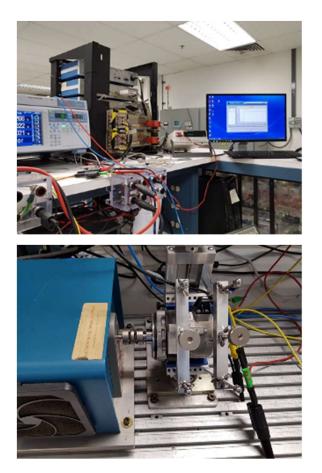
Benchmarking

No-Load and Cogging Torque Measurement



No-load Measurement

Cogging torque Measurement

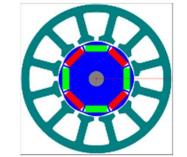

Measured cogging torque


No-load current	No-load speed
(A)	(rpm)
1.19	6006

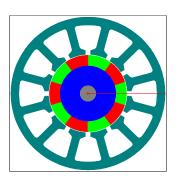
T _{cog_pk_pk}	(mN-m)	T _{cog_pk_pk_average} (mN-m)
CW	CCW	4.04
4.27	3.80	

Load Performance

Motor's load performance


Redesign Approach

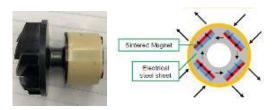
- Using the commercially available motor design software SPEED, a cost optimal motor is designed.
- The motor topology considered is Surface mounted PMBL DC motor.
 - Injection molded anisotropic bonded neo magnet (MQA) with Halbach magnetization is considered
 - MQA magnet is HRE and Cobalt free
- The motor is designed with following constrains,
 - Same effective airgap (i.e. the actual airgap plus the thickness of PPS overmold on the stator) as benchmarked motor.
 - The stator slot fill is similar or lower than the one in benchmarked motor


Introduction to IPM and SPM Motor Topologies

IPM

- Reluctance torque
- Complex control
- Useful in an application where wide speed range is needed
- Magnet is protected from the opposing field generated by the winding
- Magnet is away from the airgap
 - Needs stronger magnet to achieve higher airgap flux
 - Higher flux loss in the soft magnetic part surrounding the magnet

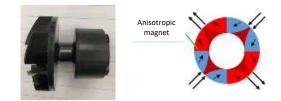
SPM


Maaneauench

- No reluctance torque
- Simple control
- Magnet is closer to the airgap and hence provides higher airgap flux
- Useful in an application where wide speed range is not needed

Why a move from IPM motor to SPM motor?

- Motor: IPM
 - Wet running motor
 - Need for a overmolding protection (either PPs or steel sleeve) on rotor to protect the magnets
 - The overmolding thickness increases the effective airgap
 - Presence of back iron in rotor
 - Assembly process complexity

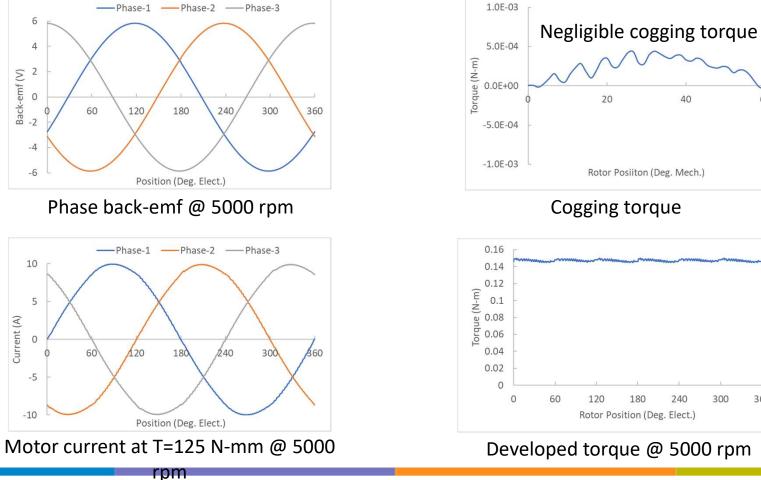

 Type of Magnet: IM Anisotorpic Bonded Neo ring with PPS

Motor: Surface mounted PMBL DC

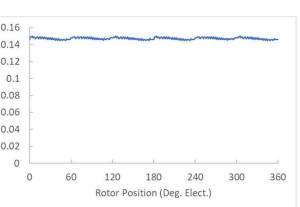
 No overmold on the rotor with IM anisotropic magnet ⇒ Lower effective airgap for motor

Maaneauench

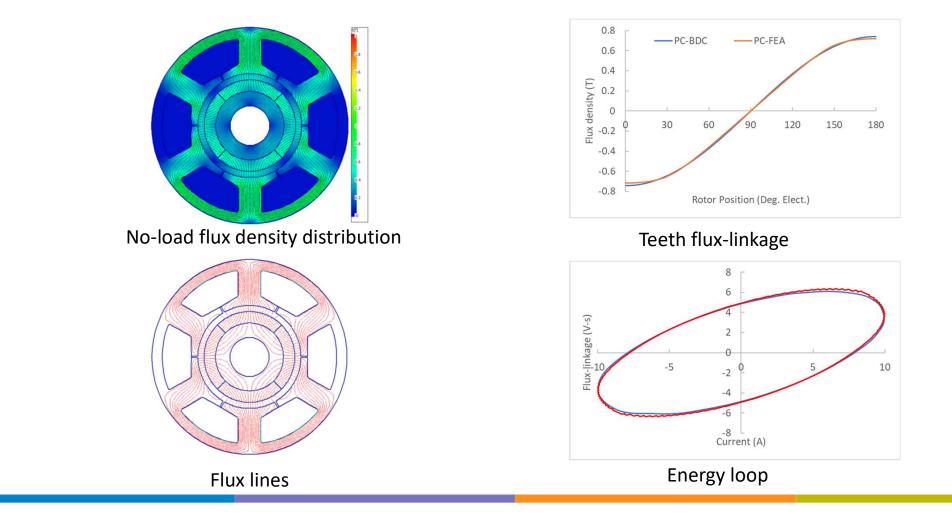
- The anisotropic bonded magnet has Halbach orientation ⇒ No need for the back iron on rotor ⇒ Weight reduction by 25% and lower cogging torque
- Magnet assembly cost is lower due to IM process for rotor



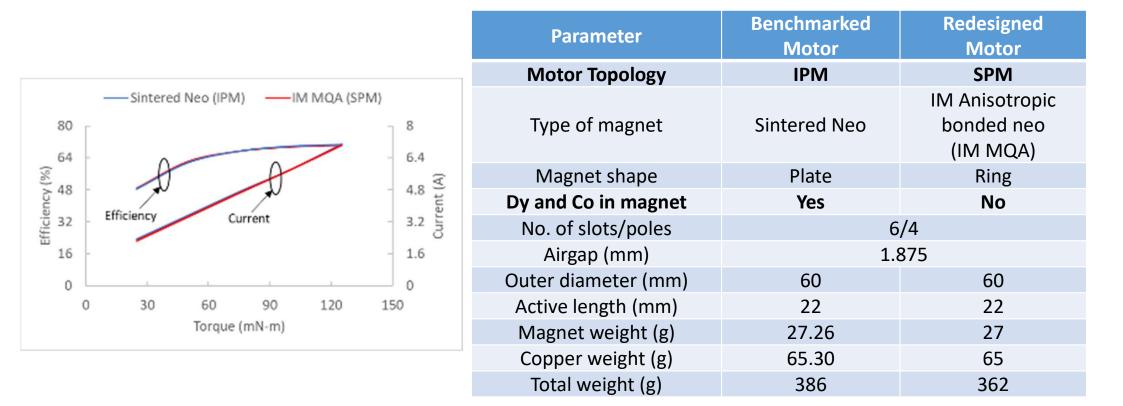
Why a move from IPM to SPM is possible without Increasing Motor Size?



Injection Molded MQA Magnet based Redesigned Motor-**Performance**


40

60


Developed torque @ 5000 rpm

Injection Molded MQA Magnet based Redesigned Motor- FEA Validation

Comparison of Benchmarked and Redesigned Motors

Maaneauench

Conclusion

- Use of surface mounted motor structure with MQA magnet can help in achieving the similar motor performance as of equivalent size IPM motor with sintered neo magnet
- The anisotropic bonded magnet doesn't use any HRE or Cobalt and hence offers price stability

