

MQ1[™] based Redesign of Electric Water Pump Motor

Ga

Nd

Ta

March, 2018

e

Benchmarking Process

- A water pump motor is procured from the market.
- The motor is benchmarked
 - Physical dimension benchmarking by measuring the following,
 - Weight of active material
 - Key stator and rotor dimensions
 - Winding pattern and conductor details
 - Magnet composition and magnetic characteristics of magnet
 - Performance benchmarking by measuring the following,
 - Closed circuit mid-airgap flux density
 - Cogging torque
 - No-load and load performance

Benchmarked Motor

- End user: Honda automotive
- Motor manufacturer: Aisin
- Part number: 06100-RDC-A00
- Motor type: Brushless (BL) DC motor
- Motor is wet runner
- Application: Inverter cooling

Motor Assembly and Key Weights

Rotor assembly (with magnet and impeller)

Stator

- No. of turns/coil: 80 turns
- Conductor diameter: 0.40 mm (AWG 26)
- Weight of copper = 40.56 g*
- Magnet
 - Material: Injection molded Anisotropic NdFeB (similar to HDDR)
 - Number of poles: 4 poles
 - Magnet weight: 20.2 g
 - Density: 5 g/cm³

Stator and Rotor Dimensions

Stator No. of laminations = 26 Lamination thickness = 0.5 mm Concentrated winding Whole stator is encapsulated with PPS

_____5

The motor is wet runner. Stator is encapsulated to prevent water touching the winding.

10.50

ICP results

Nd	Dy	В	Со	Al	Fe	Ga	Si
28.039	0.699	1.038	13.486	0.157	55.622	0.434	0.183

- 1. High Cobalt content to increase the curie temperature of compound so it can be use to make IM magnet with PPS
- 2. Cobalt price will fluctuate (increase) with the increased penetration of EV/HEV (Battery).

Connections to Control Circuit, Closed Circuit

Hall probe

Closed circuit mid-airgap flux density measurement

- Supply voltage = 12 V
- SWP ⇒ Output voltage signal corresponding to motor speed Torque transducer

Cogging torque measurement

Approach to arrive at MQ1 Based Redesigned Motor

- Using the commercially available motor design software SPEED, a motor is designed with injection molded MQ1 magnet.
 - The MQ1 magnet used is Cobalt free, offering stable and lower price compared to anisotorpic NdFeB magnet
- The motor is designed for an optimal active material cost.
- During the design following additional constrains are imposed,
 - The effective airgap for the redesigned motor is same as benchmarked motor (The effective airgap is the actual airgap plus the thickness of PPS overmold on the stator)
 - The conductor current density is similar or lower from the one in benchmarked motor
 - The slot fill is similar or lower from the one in benchmarked motor

Phase back-emf @ 4803 rpm

Motor current at T=41 N-mm @ 4803

rpm

 $T_{pk-pk_{cogging}} = 0.4 \text{ mN-m}$ 0.25 0.2 0.15 0.1 Torque (mN-m) 0.05 0 6 9 12 15 18 21 24 27 -0.05 30 0 -0.1 -0.15 -0.2 -0.25 Rotor Position (Deg.Mech.)

Cogging torque

Developed torque @ 4803 rpm

11

No-load flux density distribution

Flux lines

Teeth flux-linkage

Energy loop

Comparison of Benchmarked and Redesigned Motors

Comparison of benchmarked and redesigned motor performance

Comparison of key physical parameters for benchmarked and redesigned motor

13

Comparison of Key Physical Parameters for Benchmarked and Redesigned Motors

Parameter	Benchmarked	Redesigned	
Magnet	Anisotropic NdFeB	IM MQ1	
Magnetization Profile	Halbach	Halbach	
No. of pole	4	8	
No. of slots	6	12	
Outer diameter (mm)	50.90	50.90	
Length (mm)	13	13	
Length of airgap (mm)*	1.85	1.85	
Weight of magnet (g)	20.20	22.00	
Weight of copper (g)	40.56	35.00	
No. of turns/coil	80	24	
Coil Wire diameter (mm)	0.40 (AWG 26)	0.64 (AWG 22)	
Current & efficiency (T= 41 N-mm @ 4803 rpm)	2.31 A / 76.20%	2.05 A / 75.91%	

Observations

- MQ1 magnet gives relatively stable magnet price as it is <u>Cobalt free</u>.
- The cost of active material in IM MQ1 magnet is significantly cheaper compared to benchmarked motor with anisotropic NdFeB magnets.
 - Achieving the Halbach magnetization for an anisotropic NdFeB magnet is challenging while for an MQ1 magnet, it can be achieved by just an appropriate design of the magnetization fixture.
 - The magnet tool cost for the anisotropic magnet is significantly higher due to the need of alignment field
- For an MQ1 magnet, higher no of poles and appropriate slot no can be used to achieve the cost optimized design.
 - The IM MQ1 based motor is having the same size and volume as the benchmarked HDDR motor.
 - The weight of the MQ1 magnet is 9% more but the copper weight is 14% lower.

Questions? Want to know more? Collaborate with us?

Nd

8

Contact us, research@magnequench.com

Visit our Technical Website www.mqitechnology.com