

Recent advances in isotropic melt-spun Nd-Fe-B magnetic powders for automotive applications

Zhongmin Chen, Yun Tao, Nimit Sheth, Jim Herchenroeder Magnequench Technology Center, Singapore 117525

Presented at: MagMatApp'17, Oct 4th 2017 - Oct 5th 2017, Hanau, Germany

58

a

Outline

- Company overview --- Neo Performance Materials
- Latest developments from MQ:
 - Advanced Quenching technology and AQ grade products
 - Expanded Automotive High Temperature Product Line
 - New MQP-14-14 powder
- Application case study with AQ product

Neo Performance Materials Overview

- Privately held company with over 35 years of experience and leadership in the rare earth and rare metals industries
- 3 Business Units which serve global and distinct high technology supply chains
 - Rare Metals:
 - Acquired in 2009-2011
 - Produces, Reclaims, and Refines high value niche metals for high tech turbine, solar, and other markets
 - Chemicals & Oxides
 - Established in 1993
 - Manufactures broad range of light and heavy rare earth engineered products with facilities both inside and outside of China
 - Magnequench:
 - Founded in 1986 by General Motors, which invented bonded NdFeB magnets
 - Industry leader in the production and technologies of bonded rare earth magnetic materials and their applications

Magnequench Overview

- MQ offers broad range of powders to meet customers' various needs
- MQ can make any powder with performance within blue area

Latest Development, part 1: Advanced Quenching ("AQ") Technology

- MQ has been continuously working on improving our product's performance
- AQ technology is the results from our past 3 years R&D efforts
- It brings up to 1 MGOe increase in energy product for existing MQP products

AQ Grades Available

		Powder Properties								
Po	wder Grade	Br	Hci	(BH)max						
10		mT	kA/m	kJ/m ³						
		(kGs)	(kOe)	(MGOe)						
		895-915	716-836	126-134						
Existing Grade	MQP-B+-10118	(8.95-9.15)	(9.0-10.5)	(15.8-16.8)						
				, , , , , , , , , , , , , , , , , , ,						
AO Grade	MOP-17-9-20440	905-915	745-785	132-138						
		(9.05-9.15)	(9.4-9.7)	(16.6-17.3)						
E inin Curto	MQP-14-12- 20000-070	820 - 850	940 - 1050	107 - 120						
Existing Grade		(8.20 – 8.50)	(11.8 – 13.2)	(13.4 -15.1)						
	MQP-15-12- 20439-070	850 - 860	950 - 1030	118 - 124						
AQ Grade		(8.50 - 8.60)	(11.9 – 12.9)	(14.8 -15.6)						
Evicting Crado	MQP-B-20172 (PrNdB3)	860-880	800-860	116-124						
Existing Grade		(8.60-8.80)	(10.0-10.8)	(14.5-15.5)						
AO Crado	MQP-B+-20444	875-885	800-860	123-129						
AQ Grade		(8.75-8.85)	(10.0-10.8)	(15.4-16.2)						
Evicting Grade	MOD B 20172 (DrNidBA)	883-903	690-750	116-124						
Existing Grade	іviQP-B-20173 (PriNaB4)	(8.83-9.03)	(8.6-9.4)	(14.5-15.5)						
AO Grado	MOD B + 20441	898-908	700-740	120-128						
AQGIUUE	IVIQF-D+-20441	(8.98-9.08)	(8.8-9.3)	(15.0-16.0)						

AQ Grades example 1: MQP-17-9 vs. MQP-B+

		Powder Properties						
Powder Grade		Br	Hci	(BH)max				
		mT	kA/m	kJ/m ³				
		(kGs)	(kOe)	(MGOe)				
Existina Grade	MQP-B+-10118	895-915	716-836	126-134				
		(8.95-9.15)	(9.0-10.5)	(15.8-16.8)				
AQ Grada	MOD 17 0 20440	905-915	745-785	132-138				
AUGIUUE	MQP-17-9-20440	(9.05-9.15)	(9.4-9.7)	(16.6-17.3)				

AQ Grade example 2: MQP-15-12 vs. MQP-14-12

Powder Grade		Powder Properties						
		Br	Нсі	(BH)max				
		mT	kA/m	kJ/m ³				
		(kGs)	(kOe)	(MGOe)				
Existing Grade	MQP-14-12- 20000-070	820 - 850	940 - 1050	107 - 120				
		(8.20 – 8.50)	(11.8 – 13.2)	(13.4 -15.1)				
AQ Grade	MQP-15-12- 20439-070	850 - 860	950 - 1030	118 - 124				
		(8.50 - 8.60)	(11.9 – 12.9)	(14.8 -15.6)				

Why do AQ grades have higher Br and (BH)max? - more uniform microstructure across ribbon width **Dec**

Why do AQ grades have higher Br and (BH)max? - more uniform microstructure across ribbon width **Deo**

Why do AQ grades have higher Br and (BH)max?

- stronger exchange coupling among grains

- Intergranular interactions can be investigated by Henkel ΔM plots
 - E. P. Wohlfarth, J. Appl Phys, 29 (1958) 595
 - O. Henkel, Phys. Status Solidi, 7 (1964) 919
- $\Delta M(H) = m_{d}(H) [1-2m_{r}(H)]$
 - m_d is the reduced demagnetization remanence
 - m_r is the reduced magnetization remanence
 - $\Delta M = 0 \implies$ no interaction among grains
 - $\Delta M > 0 \implies$ exchange coupling among grains (moment are parallel aligned)
 - $\Delta M < 0 \implies$ dipolar coupling among grains (moment are anti-parallel aligned)
- Positive ΔM (for H up to H_{ci}) is shown in all MQP powders, suggesting presence of exchange coupling among the nano-grains

Why do AQ grades have higher Br and (BH)max? - stronger exchange coupling among grains

- ΔM peak is slightly higher in 17-9 than in B+ as shown below
- This means an enhanced exchange coupling between grains in 17-9, which leads to higher Br and better squareness in demagnetization curve

Latest Development, part 2: Fundamental studies on Ce substitution

- Br, Hci and (BH)max decrease linearly with increasing Ce substitution
- Curie temperature decreases linearly with Ce substitution
- Temperature coefficient of remanence (α) increases with Ce substitution
- However, temperature coefficient of coercivity (β) decreases with Ce substitution

Development of Ce-contained Powder for automotive applications

Dowdor Noreo		I	B _r	н	ci	BH _{max}	
Powder Name	Ce (%)	mT	kG	kA/m	kOe	kJ/m ³	MGOe
MQP-10-8.5HD 20180	Ce60	722	7.22	687	8.6	82	10.3
MQP-12-10HD-20352	Ce30	791	7.91	819	10.3	99	12.4
MQP-11.5-12HD-20369	Ce30	761	7.61	969	12.2	93	11.7
MQP-10.5-12HD-20379	Ce40	727	7.27	960	12.1	86	10.8
MQP-10-11HD-20402	Ce50	713	7.13	862	10.8	81	10.2
MQP-10-9.5HD-20403	Ce50	723	7.23	753	9.5	82	10.3
MQP-9-8.5HD-20404	Ce70	682	6.82	686	8.6	72	9.0

• Low-cost Ce-contained powders have been developed, with Ce content up to 70% of TRE

Magnet Data

	Ce (%)	B _r		H _c		Η _{ci}		BH _{max}		PC=2 Magnet
Powder Name		mT	kG	kA/m	kOe	kA/m	kOe	kJ/m ³	MGOe	120°C Aging (%) @1000hr
MQP-10-8.5HD-20180	Ce60	580	5.80	378	4.8	676	8.5	55	6.9	-4.2
MQP-12-10HD-20352	Ce30	640	6.40	422	5.3	792	10.0	67	8.4	-4.5
MQP-11.5-12HD-20369	Ce30	610	6.10	406	5.1	957	12.0	61	7.7	-3.9
MQP-10.5-12HD-20379	Ce40	574	5.74	382	4.8	941	11.8	55	6.9	-4.3
MQP-10-11HD-20402	Ce50	569	5.69	374	4.7	850	10.7	53	6.7	-4.5
MQP-10-9.5HD-20403	Ce50	583	5.83	384	4.8	747	9.4	56	7.0	-4.0
MQP-9-8.5HD-20404	Ce70	539	5.39	349	4.4	673	8.5	47	5.9	-6.4

- Good thermal stability and suitable for applications up to 120°C
- Good candidate for most automotive applications

- MQ has developed a new MQP-14-14 powder for 150°C applications, in response to customer's needs
- The new MQP-14-14 is developed from MQP-14-12 by introducing Co and increasing Nd content
- Compared with MQP-14-12, the new MQP-14-14 has:
 - Higher Br at 150°C
 - Same Hci at 150°C

RT demagnetization curve

- 14-14 powder has higher Br (than 14-12) at elevated temperatures (≥100°C)
- Hci in 14-14 is higher at temp from RT up to 150°C

Magnetic properties from bonded magnets

Alloy ID	magnet density (g/cc)	Temp (°C)	Br (mT)	Hc (kA/m)	Hci (kA/m)	(BH)m (kJ/m3)	α %/°C	β %/°C
MQP-14-12 A0218996	6.04	22	671	484	1012	81		
		100	594	428	752	64	-0.15	-0.33
		150	534	381	631	51	-0.16	-0.29
		180	458	323	541	37	-0.20	-0.29
MQP-14-14 B46527	6.08	22	638	461	1149	73		
		100	602	431	787	65	-0.07	-0.40
		150	547	381	604	53	-0.11	-0.37
		180	509	344	516	45	-0.13	-0.35

- 14-14 bonded magnet has higher Br (than 14-12) at elevated temperatures (≥100°C)
- Straight B-H line up to 180°C

150°C flux aging loss in bonded magnets

- 14-14 bonded magnet (PC=2) has 4.8% flux aging loss after 150°C/1000hr
- This is slightly higher than that of MQP-14-12 (4.1%)

Automotive Accessory Motor Redesign with AQ grade powder/magnet

- An automotive accessory motor has been redesigned for two magnet type for the same size
 - Magnets from MQP-14-12 and MQP-15-12
- The advance quenching technique has helped in achieving finer grain size for MQP-15-12 powder
 - 1.2% increase in magnet B_r over the magnets from MQP-14-12
- As the motor was designed to avoid working in deep saturation of soft magnetic components (e.g. Stator back iron and rotor back iron), the increase in B_r translated to similar increase in the active airgap flux leading to an improved performance.

Redesign Motor: Configuration

- Permanent Magnet
 Brushless DC Motor
 - Three Phase, 8-Pole, 12-Slot configuration
 - Concentrated winding
 - Radially magnetized magnet
 - Rectangular current drive

Redesigned Motors: Finite Element Analysis

No-load flux density distribution in a motor with magnet from MQP-15-12

Close match between the Analytical design and FE Analysis

Motor performance comparison for two MQ1 magnets

- The magnets from AQ process will help in improving the motor performance.
 - Useful for applications needing the reduction in motor envelop without sacrificing the performance or improving the performance from the same envelop

Summary

- AQ technology has enabled AQ grade products
 - More uniform microstructure & enhanced exchange coupling
 - Higher Br and (BH)max
 - Applicable to all existing MQP products
- Ce-contained powders have been developed for automotive applications
 - Ce content up to 60% of TRE
 - Good thermal stability at up to 120°C, suitable for most automotive applications
- A new MQP-14-14 powder has been developed
 - Higher Br at 150°C than MQP-14-12
 - Same Hci at 150°C
- Magnets from AQ grade powder can help in meeting the challenging motor performance requirement (e.g. improved efficiency, increase in torque density etc.)