

MQP[™]-8-5-20159-070 Isotropic Powder*

Material Description

MQP-8-5-20159 is a low cost isotropic powder designed for the manufacture of bonded magnets. Because Ce comprises 80% of the total rare earth content in MQP-8-5-20159, this powder grade allows for greater cost stability. Its relatively low Br enables MQP-8-5-20159 to be well-suited for replacing ferrite based applications which typically require magnetic properties of 5MGOe or lower. MQP-8-5-20159 is produced by employing a proprietary rapid solidification process followed by a milling process and heat treatment.

Powder Mag	netic Characteristics ¹ <u>SI</u>	<u>CGS</u>		
Specified	$\begin{array}{llllllllllllllllllllllllllllllllllll$	mT6.65-6.85 kJ/m³7.4-8.7 kA/m4.7-5.5	kG MGOe kOe	
Typical	$\begin{array}{llllllllllllllllllllllllllllllllllll$	kA/m ≥ 14.0 %/°C %/°C kA/m 4.1 °C °C °C	kOe kOe	
,	,	kOe)		0
10.0		5.0		0 1.0
8.0	-1.0	-2.0	-5.0	0.8
4тМ or B(kG)				B or J(T)
4.0		25°C 80°C		0.4
2.0		100°C	120°C 150°C	0.2
		400 A/m)	-200	0.0

Physcial Characteristics

.,	
Specified	Sieve Screen Analysis: Total > 40 Mesh (420x420µm opening)< 0.1wt% Total > 60 Mesh (250µmx250µm opening)< 25wt% Total < 270 Mesh (53µmx53µm opening)< 12wt%
Typical	Density (theoretical)

^{*}Contact Magnequench to obtain up-to-date product specifications.

Bonded Magnet Characteristics⁴

¹ Properties measured at 25°C, unless otherwise specified.

The Maximum Operating Temperature for a magnet made from this powder is dependent upon the specific application, the type of magnet, and magnet geometry. Contact our Application Engineers for more information.

³ Maximum Process Temperature is defined here at <2% reduction in coercivity (i.e. structural loss) after heating powder 1 hour in air.

⁴ These properties are typical at 25°C and are representative only. Magnet properties are dependent upon powder loading and magnet manufacturing conditions. Contact our Application Engineers for information about Magnequench magnet products.

^{*} This powder, the products that are made there from, and its manufacturing processes are subject to one or more of the following United States Patents: 6,183,572; 6,478,890; 6,527,875; 6,855,265; 6,979,409; 7,087,185; 7,144,463.