MQP[™]-8-5-20159-070 Isotropic Powder* ## **Material Description** MQP-8-5-20159 is a low cost isotropic powder designed for the manufacture of bonded magnets. Because Ce comprises 80% of the total rare earth content in MQP-8-5-20159, this powder grade allows for greater cost stability. Its relatively low Br enables MQP-8-5-20159 to be well-suited for replacing ferrite based applications which typically require magnetic properties of 5MGOe or lower. MQP-8-5-20159 is produced by employing a proprietary rapid solidification process followed by a milling process and heat treatment. | Powder Mag | netic Characteristics ¹ <u>SI</u> | <u>CGS</u> | | | |--------------|--|---|-------------------|-----------| | Specified | $\begin{array}{llllllllllllllllllllllllllllllllllll$ | mT6.65-6.85
kJ/m³7.4-8.7
kA/m4.7-5.5 | kG
MGOe
kOe | | | Typical | $\begin{array}{llllllllllllllllllllllllllllllllllll$ | kA/m ≥ 14.0
%/°C
%/°C
kA/m 4.1
°C
°C
°C | kOe
kOe | | | , | , | kOe) | | 0 | | 10.0 | | 5.0 | | 0 1.0 | | 8.0 | -1.0 | -2.0 | -5.0 | 0.8 | | | | | | | | 4тМ or B(kG) | | | | B or J(T) | | 4.0 | | 25°C 80°C | | 0.4 | | 2.0 | | 100°C | 120°C 150°C | 0.2 | | | | 400
A/m) | -200 | 0.0 | ## **Physcial Characteristics** | ., | | |-----------|--| | Specified | Sieve Screen Analysis:
Total > 40 Mesh (420x420µm opening)< 0.1wt%
Total > 60 Mesh (250µmx250µm opening)< 25wt%
Total < 270 Mesh (53µmx53µm opening)< 12wt% | | Typical | Density (theoretical) | ^{*}Contact Magnequench to obtain up-to-date product specifications. ## **Bonded Magnet Characteristics⁴** ¹ Properties measured at 25°C, unless otherwise specified. The Maximum Operating Temperature for a magnet made from this powder is dependent upon the specific application, the type of magnet, and magnet geometry. Contact our Application Engineers for more information. ³ Maximum Process Temperature is defined here at <2% reduction in coercivity (i.e. structural loss) after heating powder 1 hour in air. ⁴ These properties are typical at 25°C and are representative only. Magnet properties are dependent upon powder loading and magnet manufacturing conditions. Contact our Application Engineers for information about Magnequench magnet products. ^{*} This powder, the products that are made there from, and its manufacturing processes are subject to one or more of the following United States Patents: 6,183,572; 6,478,890; 6,527,875; 6,855,265; 6,979,409; 7,087,185; 7,144,463.