

MQP[™]-13-9-20143-070 Isotropic Powder*

Material Description

MQP-13-9-20143-070 is a low cost powder designed for use in cost-sensitive applications as this powder grade is based on a patented and cost optimized Nd-Pr-Ce-Fe-B alloy composition. This material is produced by employing a proprietary rapid solidification process followed by a milling process and heat treatment.

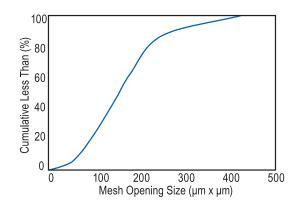
Powder Magnetic Characteristics ¹ S		<u>SI</u>	<u>CGS</u>	
Specified	Residual Induction, B _r Energy Product, (BH) _{max} Intrinsic Coercivity, H _{ci}	815-845 100-112 700-780	mT8.15-8.45 kJ/m³12.6-14.1 kA/m8.8-9.8	kG MGOe kOe
Typical	$ \begin{array}{llllllllllllllllllllllllllllllllllll$		kA/m	kOe kOe
- 1	H(kOe) 3.0 -5.0			
10.0	-1.0		-2.0	-5.0
8.0				
<u>©</u> " (
4тМ or B(kG)		25°C 80°C		
4.0		100°C		

150°C

-400

H(kA/m)

Physcial Characteristics


2.0

-800

 Specified
 Sieve Screen Analysis: Total > 40 Mesh (177x177μm opening)< 0.1wt% Total > 60 Mesh (149x149μm opening)< 25wt% Total < 270 Mesh (53x53μm opening)< 12wt%</td>

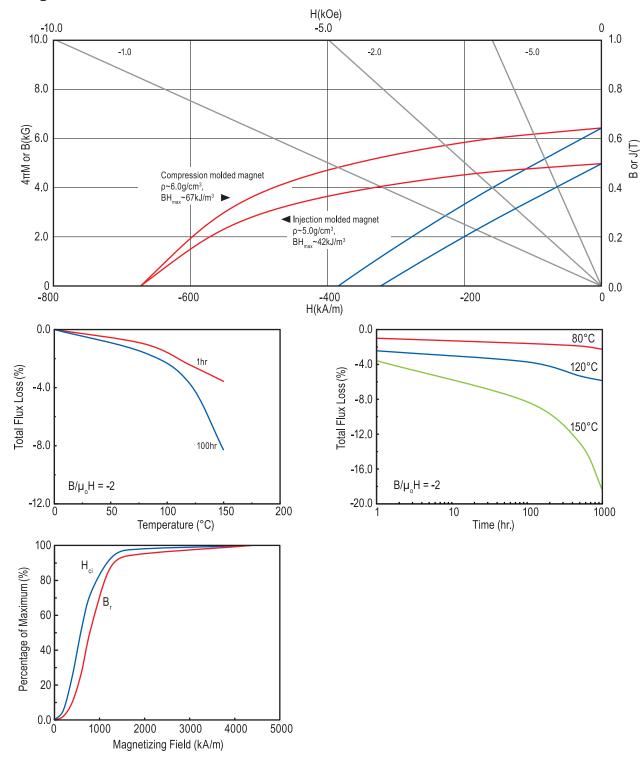
 Typical
 Density (theoretical)
 7.60 g/cm³ Apparent Density

-600

-200

8.0

0.4


0.2

0.0

^{*}Contact Magnequench to obtain up-to-date product specifications.

Bonded Magnet Characteristics⁴

¹ Properties measured at 23°C, unless otherwise specified.

² The Maximum Operating Temperature for a magnet made from this powder is dependent upon the specific application, the type of magnet, and magnet geometry. Contact our Application Engineers for more information.

³ Maximum Process Temperature is defined here at <2% reduction in coercivity (i.e. structural loss) after heating powder 1 hour in air.

⁴ These properties are typical at 23°C and are representative only. Magnet properties are dependent upon powder loading and magnet manufacturing conditions. Contact our Application Engineers for information about Magnequench magnet products.

^{*} This powder, the products that are made there from, and its manufacturing processes are subject to one or more of the following United States Patents: 6,183,572; 6,478,890; 6,527,875; 6,855,265; 6,979,409; 7,087,185; 7,144,463.