

Magnetization Fixture Design and Evaluation

Overview

- Introduction
- Salient features of the magnetizing fixture design
- Following aspects have been discussed
 - A. Effect of additional back iron during in-situ magnetization
 - B. Laminated back iron v/s solid back iron
 - C. Effect of conductor location
 - D. Effect of fixture slot shaping

Salient features of the magnetizing fixture design

Factors effecting the distance between conductor and the magnet, 'A':

- Energy required for magnet saturation
 - Increase in 'A' \Rightarrow Increase in energy for saturation
- Magnetization flux wave shape
 - Radial orientation: conductors close to the magnet
 - Halbach orientation: conductors away from the magnet

In-situ magnetization fixture:

- Limited clearance 'd' between fixture core and conductor overhang
- Conductor size is limited by the available total space between fixture core and pole housing

Salient features of the magnetizing fixture design					
Design parameter	Fixture for Radial orientation	Fixture for Halbach orientation			
Distance between fixture winding and magnet, 'A'	Closed slot design : ≤ 0.50 mm Including sleeve thickness, Semi-open slot : ≤ 0.65 mm Fully open slot : ≤ 0.75 mm	Typically more than 1 mm including the sleeve thickness			
Preferred conductor arrangement	Column Magnet Sleeve Winding turns Fixture slot	Row Magnet Sleeve Fixture slot Winding turns			
Conductor size	 Depends on the following: Required magnetizing flux wave shape and Current density (MQT, Singapore design limit is <15 kA/mm² to avoid thermal failure mode of fixture) Ease of handling (bending the wire during fixture winding) Available overhang space (only for in-situ magnetization) 				
Number of turns	Minimum turns required to generate the saturation field of around 3.5 T at the magnet diameter farthest from the fixture winding. Higher no of turns \Rightarrow Increased fixture inductance \Rightarrow Increase time to peak magnetizing current \Rightarrow Fixture overheating/thermal failure				

Salient features of the magnetizing fixture design

Design parameter	Fixture for Radial orientation	Fixture for Halbach orientation	
Slot type	With skew - Open or semi-open No Skew- Closed	Open slot is preferred to obtain sinusoidal magnetizing flux	
Fixture core material	Laminated steel \rightarrow Prevent eddy current		
Back iron	Required	-N.A-	
Back iron material	Laminated steel \rightarrow Avoid secondary transition zones	-N.A-	
Back iron thickness	Minimum thickness to avoid saturation Rule of thumb - Minimum 10 times the magnet thickness	-N.A-	
Sleeve thickness for semi- open or fully open slots	 Minimum thickness→ Based on structural strength Maximum thickness→ Based on the desired magnetizing waveform. Magnetizing energy needed increases with increase in thickness. 		
	Rule of thumb followed by MQT, Singapore : Sleeve thickness ≥ 0.3 mm		

Salient aspects of the magnetizing fixture design

Design parameter	Fixture for Radial orientation	Fixture for Halbach orientation	
Fixture stack length	1.2 -1.5 times the magnet axial length to limit the fixture resistance		
Magnetizing current	Limited by the Magnetizer system rating (< 50kA for system at MQT, Singapore)		
Time to peak of magnetizing current	Limited by the Magnetizer system inductive (typical value is < 250 µs for the Magnet	tance :izer at MQT, Singapore)	

Effect of Additional Back Iron during In-situ Magnetization – Mid Airgap Flux Density

Effect of Additional Back Iron during In-situ Magnetization - Magnet Surface Flux Density and Construction Test

- At any applied magnetizing energy, flux per pole is more in case of magnetization with additional back iron due to no saturation in back iron.
- Without any additional back iron, the shape of the mid-air gap flux will shift from radial towards sinusoidal (edges will be rounded).

Flux/pole at various applied magnetizing voltages

Laminated back iron v/s Solid back iron Flux density comparison on magnet inner diameter

Flux scan of magnet inner diameter

Flux scan set-up Comparison of magnet radial flux for magnetizations with laminated and solid back iron

Type of back yoke during magnetization	Flux integral (T-degree)	Difference in flux integral
Solid	74.34	-
Laminated	89.42	+20.3 %

Effect of fixture slot shaping

Flat slot magnetizing fixture System

Curved slot magnetizing fixture system

Motor phase back-emf for magnet orientation achieved using the flat and curved slot magnetizing fixtures

Cogging torque of the motor for magnet magnetized using the flat and curved slot magnetizing fixtures

13

Magnequench

Magnetization fixture for Automotive Accessory motor magnet

Fixture cross-section with dimensions

- Back iron and the fixture core: Laminated steel
- Heavy insulated copper wire: AWG 12
- Cooling pipe: Brass (6 mm diameter)
- Connecting terminals: Copper
- Casing: Delrin (Polyoxymethylene)
- Sleeve: Stainless steel
- For series production, the magnetization cycle time is determined by the following:
 - Energy required for magnetization
 - Cooling system
 - Magnetizing system rating

Magnetization fixture design

Fixture outline

9400.0

Current density plot @ peak magnetizing current

16

Magnetization fixture design

Flux distribution @ peak magnetizing current

Flux density plot @ peak magnetizing current

Magnetization Fixture – Structural Design Details

Fixture and back iron structural dimensions

18

ne

Magnequench

Fixture Fabrication

Fixture casing with cooling pipe installed

Completed fixture

Wound core mounted on the cooling pipe and connected to the terminals

Fixture set-up for magnetization

Note: A single layer flux scan measurement and does not represent the integrated flux over the entire axial length of the magnet.

Magnetizing current for various magnetization energy conditions Saturation curve

- Saturation test is used to identify the energy required to fully saturate the magnet.
- Saturation test procedure:
 - To generate the saturation curve an integral of magnet flux per pole is charted incrementally as magnetizing energy is increased.
 - The magnet is saturated when a significant increase in magnetizing energy results in less than 2% change in magnet flux per pole.

Case Study - Magnetizing of Isotropic Bonded

Case Study – Magnetizing of an Isotropic Bonded Neo Arc Magnets – Magnetizing Fixtures

Case Study – Magnetizing of an Isotropic Bonded Neo Arc Magnets – Magnetizing Fixture and Orientation of Flux

Case Study - Magnetizing of an Isotropic Bonded Neo Arc Magnets – Mid Airgap Flux Density

Case Study – Magnetizing of an Isotropic Bonded Neo Arc Magnets – Design Flow

One FEA model solves for magnetization, and...

...the result...

... is used in the application FEA.

